Salicornia europaea L. Functional Traits Indicate Its Optimum Growth

Plants (Basel). 2022 Apr 12;11(8):1051. doi: 10.3390/plants11081051.

Abstract

Salicornia europaea L. grows in areas periodically flooded by salty or brackish water. It has potential economic value, because it can be used as food, forage, or biofuel, and has potential in pharmaceuticals and cosmetics. Increasing interest in S. europaea is due to its extreme salt tolerance and well growth in marginal saline soils. However, the variation in its functional traits in response to environmental conditions is still poorly studied. There are still questions regarding the optimal level of salinity for different traits. Therefore, we worked to address the question if S. europaea traits from different scales are controlled by salinity level. Based on performed pot experiment, we found that almost all traits are salinity dependent but affected in different ways. We demonstrated that morphological, biomass, and anatomical properties indicate optimum growth between 200 and 400 mM NaCl and growth limitations at 0, 800, and 1000 mM NaCl. Moreover, we found the most affected traits which include photosynthetic pigments and protein content, plant surface area, peroxidase activity, and anatomic traits related to cell shape. Our results significantly expanded the knowledge about S. europaea functional traits variation in response to salinity, which can be important for discovering regulating processes and for possible future agricultural applications.

Keywords: anatomy; catalase; chlorophyll content; halophytes; hydrogen peroxide; morphology; peroxidase; salinity.