16S rRNA Gene Sequencing Revealed Changes in Gut Microbiota Composition during Pregnancy and Lactation in Mice Model

Vet Sci. 2022 Apr 1;9(4):169. doi: 10.3390/vetsci9040169.

Abstract

The gut microbiota play a vital role in regulating endocrine-mediated metabolism, immunity, and energy metabolism. However, little is known about the gut microbiota and metabolite composition and development throughout pregnancy and lactation. Here, we used amplicon sequencing to analyze the gut microbiota composition of 35 female mice in five stages of pregnancy and lactation, namely, non-receptive (NR) stages, sexually-receptive (SR) stages, at day 15 of pregnancy (Pre_D15), at the day of birth (Del), and at day 10 of lactation (Lac_D10). The results revealed that the α diversity of gut microbiota was significantly increased during pregnancy and lactation. In addition, the principal coordinate analysis (PCoA) conducted on the amplicon sequence variants' (ASVs') distribution of the 16S rRNA amplicons indicated that the microbiota composition was significantly different among the five groups. Based on a random forest analysis, Oscillospira, Dehalobacterium, and Alistipes were the most important microbiota. The abundance of Allobaculum, Oscillospira, and Ruminococcus were negatively correlated with the serum progesterone concentration, while the abundance of Oscillospira was positively correlated with the propionate and valerate concentration in the caecal contents. Moreover, the concentration of acetate and propionate in the Del and Lac_D10 stages was significantly lower than in the SR and Pre_D15 stages. Our findings indicate that some gut microbes and metabolites vary considerably at the different stages of pregnancy and during lactation stages, which can potentially be used as microbial biomarkers. These results provide information on the potential use of the identified microbes as probiotics to maintain a healthy pregnancy and lactation.

Keywords: gut microbiota; lactation; metabolites; pregnancy; reproductive hormones.