A Simplified Method for Anionic Surfactant Analysis in Water Using a New Solvent

Toxics. 2022 Mar 29;10(4):162. doi: 10.3390/toxics10040162.

Abstract

Anionic surfactants (AS) are becoming a major emerging contaminant of waters due to their widespread use in household and industrial products. The standard chloroform method for analysis of AS in water relies on chloroform extraction of a methylene blue active substance (MBAS), which contains ion pairs between methylene blue (MB) molecules (positively charged) and AS. Due to the poor extractability of chloroform, the procedure is complicated, time-consuming, and subject to anionic interferences. A mixture of methyl isobutyl ketone (MIBK)-1,2-dichloroethane (DCE) at a 3:1 ratio of MIBK:DCE proved to be a robust solvent for AS extraction for a wide range of samples under various chemical conditions. The objectives of this research were to set the washing protocol to eliminate the anionic interferences in the MIBK-DCE extraction and to develop a new simplified analytical method for AS analysis using the MIBK-DCE (3:1) extractant. The suitability of the proposed MIBK-DCE method was validated based on quality control and assurance criteria, such as selectivity, accuracy, precision, method detection limit (MDL), limit of quantification (LOQ), and sensitivity. Various water samples, such as freshwater, wastewater, and seawater, were used for the method development and validation. Interferences by inorganic and organic anions were evident in the reference chloroform method but were eliminated in the MIBK-DCE procedure with a two-step process that consisted of washing with a carbonate/bicarbonate solution at pH 9.2 and a mixture of silver sulfate (Ag2SO4) and potassium alum (AlK(SO4)2). The simplified MIBK-DCE method for sodium dodecyl sulfate (SDS) analysis consisted of (i) sample pre-treatment, (ii) MIBK-DCE extraction, (iii) washing and filtration, and (iv) absorbance measurement. The MIBK-DCE method was accurate, precise, selective, and sensitive for AS analysis and showed MDL of 0.0001 mg/L, LOQ of 0.0005 mg/L, relative standard deviation (RSD) of 0.1%, and recovery of 99.0%. All these criteria were superior to those of the chloroform method. Sensitivity analysis showed highly significant correlations in AS analyses between the MIBK-DCE and chloroform methods for domestic wastewater, industrial wastewater, and seawater. The MIBK-DCE method is simple, rapid, robust, reproducible, and convenient, when compared to the chloroform method. Results demonstrate that the simplified MIBK-DCE method can be employed for AS analysis in a wide range of environmental waters including seawater.

Keywords: MIBK-DCE (3:1); analytical method; anionic surfactant; chloroform; interferences.