Ag-modified g-C3N4 with enhanced activity for the photocatalytic reduction of hexavalent chromium in the presence of EDTA under ultraviolet irradiation

Environ Technol. 2023 Sep;44(23):3627-3640. doi: 10.1080/09593330.2022.2068379. Epub 2022 Apr 29.

Abstract

The photocatalytic reduction of Cr6+ to Cr3+ in an aqueous solution, using 3 wt% Ag/g-C3N4 in the presence of ethylenediaminetetraacetic acid (EDTA), has been investigated here. The photocatalytic reduction of Cr6+ with pure g-C3N4 was very low. The addition of Ag and EDTA can significantly improve the photocatalytic reduction of Cr6+ using g-C3N4. In the presence of EDTA, the efficiency with Ag/g-C3N4 was better than those with Au/g-C3N4 and Cu/g-C3N4. With EDTA, the reduction rate constant increased from 0.0005 for pure g-C3N4 to 0.12 min-1 for 3 wt% Ag/g-C3N4. By increasing the concentration of EDTA from 0 to 500 mg L-1, the reduction efficiency of Cr6+ increased extremely, and the rate constant raised from 0.008 to 0.12 min-1. The optimal EDTA concentration was 500 mg L-1 for the photocatalyst Ag/g-C3N4. The Ag-EDTA complex may be reduced to metallic silver by the conduction band electrons of g-C3N4. The electron-hole recombination was significantly suppressed by the electron trapping of Ag. EDTA may act in by the formation of Cr3+-complex and the separation of Cr3+ from the g-C3N4 surface and by the valence band hole scavenger of g-C3N4. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL) were used to characterize g-C3N4 and Ag/g-C3N4 nanoparticles. A possible mechanism for photocatalytic Cr6+ reduction has also been demonstrated.

Keywords: Ag/g-C3N4; Cr6+; EDTA; UV irradiation; photocatalytic reduction.

MeSH terms

  • Catalysis
  • Edetic Acid
  • Graphite* / chemistry
  • Light*
  • Ultraviolet Rays

Substances

  • Edetic Acid
  • chromium hexavalent ion
  • Graphite