Evidence of protective effects of recombinant ADAMTS13 in a humanized model of sickle cell disease

Haematologica. 2022 Nov 1;107(11):2650-2660. doi: 10.3324/haematol.2021.280233.

Abstract

Sickle cell disease (SCD) is an inherited red blood cell disorder that occurs worldwide. Acute vaso-occlusive crisis is the main cause of hospitalization in patients with SCD. There is growing evidence that inflammatory vasculopathy plays a key role in both acute and chronic SCD-related clinical manifestations. In a humanized mouse model of SCD, we found an increase of von Willebrand factor activity and a reduction in the ratio of a disintegrin and metalloproteinase with thrombospondin type 1 motif, number 13 (ADAMTS13) to von Willebrand factor activity similar to that observed in the human counterpart. Recombinant ADAMTS13 was administered to humanized SCD mice before they were subjected to hypoxia/reoxygenation (H/R) stress as a model of vaso-occlusive crisis. In SCD mice, recombinant ADAMTS13 reduced H/R-induced hemolysis and systemic and local inflammation in lungs and kidneys. It also diminished H/R-induced worsening of inflammatory vasculopathy, reducing local nitric oxidase synthase expression. Collectively, our data provide for the firsttime evidence that pharmacological treatment with recombinant ADAMTS13 (TAK-755) diminished H/R-induced sickle cell-related organ damage. Thus, recombinant ADAMTS13 might be considered as a potential effective disease-modifying treatment option for sickle cell-related acute events.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ADAMTS13 Protein* / therapeutic use
  • Anemia, Sickle Cell* / complications
  • Anemia, Sickle Cell* / drug therapy
  • Animals
  • Disease Models, Animal
  • Erythrocytes, Abnormal
  • Humans
  • Hypoxia
  • Mice
  • Recombinant Proteins / therapeutic use
  • Vascular Diseases* / drug therapy
  • Vascular Diseases* / etiology
  • von Willebrand Factor

Substances

  • ADAMTS13 Protein
  • von Willebrand Factor
  • Recombinant Proteins