Positional Assignment of C-C Double Bonds in Fatty Acyl Chains of Intact Arsenosugar Phospholipids Occurring in Seaweed Extracts by Epoxidation Reactions

J Am Soc Mass Spectrom. 2022 May 4;33(5):823-831. doi: 10.1021/jasms.2c00006. Epub 2022 Apr 20.

Abstract

Water-soluble diacyl arsenosugar phospholipids (As-PL) are natural products widespread in marine animals and algae, including the brown alga Undaria pinnatifida, also known as wakame. The systematic recognition of As-PL has been hampered by the lack of standard and of qualitative methods to establish the carbon-carbon double bond positions of unsaturated fatty acyl chains. Here, the epoxidation reaction of fatty acyl substituents of As-PL was carried out with high selectivity by meta-chloroperoxybenzoic acid and the C-C double bond localization was established by collision-induced dissociation of epoxidized species as deprotonated molecules, [epoM - H]-. Reversed-phase liquid chromatography (RPLC) separation and a sequential triple-stage MS (i.e., MS3) analysis of unsaturated and epoxidized As-PL were very helpful to characterize the carbon-carbon double bond locations of both sn-1 and sn-2 fatty acyl chains, starting from a diagnostic product ion pair with 16.0 Da mass difference. These results indicate that intact As-PL can be annotated in terms of fatty acyl chain composition and in terms of their C-C double bond position(s). Interestingly, hexadecenoic (16:1 Δ9) and octadecenoic (18:1 Δ9) along with octadecadienoic (18:2 Δ9,12) and octadecatrienoic (18:3 Δ9,12,15) were found to be the most abundant unsaturated fatty acyl chains of As-PL in the brown alga wakame, thus confirming it as a good source of essential fatty acids with a balanced ω6/ω3 ratio. Although the toxicity of As-including metabolites of algal As-PL is still a matter of debate and needs to be studied in more detail, the described approach can be exploited to assess if As-PL could contribute to the supply of essential fatty acids related to the use of algae as nutritious food.

Keywords: arsenosugar phospholipids; double bonds; multistage mass spectrometry; reversed phase liquid chromatography; seaweeds; unsaturated fatty acids.

MeSH terms

  • Animals
  • Arsenates
  • Carbon
  • Monosaccharides
  • Phospholipids / analysis
  • Plant Extracts
  • Seaweed*
  • Undaria* / chemistry

Substances

  • Arsenates
  • Monosaccharides
  • Phospholipids
  • Plant Extracts
  • arsenosugar
  • Carbon