Multi-isotopes revealing the coastal river anthropogenic pollutants and natural material flux to ocean: Sr, C, N, S, and O isotope study

Environ Sci Pollut Res Int. 2022 Aug;29(40):61397-61411. doi: 10.1007/s11356-022-20223-z. Epub 2022 Apr 20.

Abstract

Coastal river exports massive terrestrial materials to the adjacent marine environment with information about chemical weathering, providing critical insights on riverine flux and the potential impact on marine ecosystem. In this study, the preliminary data of dissolved strontium (Sr) and 87Sr/86Sr in a typical coastal river in southeastern China were collected along with hydrochemistry and C, N, S, and O isotopes to discriminate the source of terrestrial weathering and the riverine flux. Sr concentrations exhibited a range of 0.084 ~ 1.307 μmol L-1, and 87Sr/86Sr values ranged 0.7089 ~ 0.7164. The total cationic charge (TZ+) ranged 0.2 ~ 11.7 meq L-1 with the predominant Ca2+ which accounted for > 50% of TZ+, while the anions were dominated by HCO3-. The extremely high Na+ and Cl- near the estuary indicated seawater mixing in such a coastal river. δ13C-DIC, δ15N-NO3-, δ18O-NO3-, and δ34S-SO42- of river water ranged - 24.1‰ ~ - 9.2‰, 0.3‰ ~ 22.7‰, - 2.1‰ ~ 21.4‰, and - 9.3‰ ~ 18.0‰, respectively. δ13C enhanced correspondingly to decreased δ34S, confirming the attendance of H2SO4 in carbonate weathering. Most δ18O values exhibited within ± 10‰, indicating the dominant nitrification process. δ15N presented slightly negative relationship with δ13C and no obvious correlation with δ34S, indicating relatively limited impact of denitrification. The depleted δ13C and δ15N may be attributed to carbonate dissolution with nitric acids and the oxidation of organic matters into C and N pools. Quantitative analysis revealed that silicate weathering accounts for 79% of total dissolved Sr, indicating the dominant weathering process. The estimated monthly flux of dissolved Sr to the East China Sea was 138.1 tons, demonstrating an potential impact on seawater Sr isotope evolution. Overall, the investigations of multi-isotopes revealed the enhancement of weathering rates and the consequently depleted CO2 consumption, which further proved the involvement of strong acids (H2SO4 and HNO3). This study provides scientific insight in terrestrial weathering and anthropogenic impact of a typical coastal watershed and may orient the management of environmental issues related to coastal ecosystems.

Keywords: Chemical weathering; Coastal ecosystem; Jiulongjiang River; Riverine flux; Strong acids.

MeSH terms

  • Carbonates / analysis
  • China
  • Ecosystem
  • Environmental Monitoring
  • Environmental Pollutants* / analysis
  • Isotopes / analysis
  • Oceans and Seas
  • Rivers
  • Strontium / analysis
  • Water Pollutants, Chemical* / analysis

Substances

  • Carbonates
  • Environmental Pollutants
  • Isotopes
  • Water Pollutants, Chemical
  • Strontium