Effects of Various Allelic Combinations of Starch Biosynthetic Genes on the Properties of Endosperm Starch in Rice

Rice (N Y). 2022 Apr 19;15(1):24. doi: 10.1186/s12284-022-00570-8.

Abstract

Rice endosperm accumulates large amounts of photosynthetic products as insoluble starch within amyloplasts by properly arranging structured, highly branched, large amylopectin molecules, thus avoiding osmotic imbalance. The amount and characteristics of starch directly influence the yield and quality of rice grains, which in turn influence their application and market value. Therefore, understanding how various allelic combinations of starch biosynthetic genes, with different expression levels, affect starch properties is important for the identification of targets for breeding new rice cultivars. Research over the past few decades has revealed the spatiotemporal expression patterns and allelic variants of starch biosynthetic genes, and enhanced our understanding of the specific roles and compensatory functions of individual isozymes of starch biosynthetic enzymes through biochemical analyses of purified enzymes and characterization of japonica rice mutants lacking these enzymes. Furthermore, it has been shown that starch biosynthetic enzymes can mutually and synergistically increase their activities by forming protein complexes. This review focuses on the more recent discoveries made in the last several years. Generation of single and double mutants and/or high-level expression of specific starch synthases (SSs) allowed us to better understand how the starch granule morphology is determined; how the complete absence of SSIIa affects starch structure; why the rice endosperm stores insoluble starch rather than soluble phytoglycogen; how to elevate amylose and resistant starch (RS) content to improve health benefits; and how SS isozymes mutually complement their activities. The introduction of active-type SSIIa and/or high-expression type GBSSI into ss3a ss4b, isa1, be2b, and ss3a be2b japonica rice mutants, with unique starch properties, and analyses of their starch properties are summarized in this review. High-level accumulation of RS is often accompanied by a reduction in grain yield as a trade-off. Backcrossing rice mutants with a high-yielding elite rice cultivar enabled the improvement of agricultural traits, while maintaining high RS levels. Designing starch structures for additional values, breeding and cultivating to increase yield will enable the development of a new type of rice starch that can be used in a wide variety of applications, and that can contribute to food and agricultural industries in the near future.

Keywords: Amylopectin; Amylose; Backcrossing; Endosperm; Indica rice; Japonica rice; Starch biosynthesis; Starch branching enzyme; Starch debranching enzyme; Starch synthase.

Publication types

  • Review