Assessing the sensitivity of alfalfa yield potential to climate impact under future scenarios in Iran

Environ Sci Pollut Res Int. 2022 Aug;29(40):61093-61106. doi: 10.1007/s11356-022-20287-x. Epub 2022 Apr 18.

Abstract

Alfalfa is a major forage crop in Iran. To quantify the impact of climate change on its yield and water application for irrigation in Iran, the SSM-iCrop2 simulation model and two GCMs of IPSL and HadGEM were used under RCP4.5 and RCP8.5 for the 2050s. Despite increased temperatures, alfalfa forage yield will increase in most of the regions across the country due to acceleration of spring regrowth, a higher number of cuttings, increased incident and received photosynthetically active radiation because of increased growing season length due to increased temperatures, and positive effect of CO2 on photosynthesis and radiation use efficiency. Changes in climatic conditions have had a significant impact on alfalfa net irrigation water, and the sum of net irrigation water has a direct relationship with alfalfa yield. Due to increased temperature, changes in rainfall, and improved concentration of atmospheric CO2, the forage yield of alfalfa will fluctuate highly under all climatic scenarios. The highest increase and decrease in the average yield using the HadGEM model under RCP8.5 was 32 and - 33%, respectively. The average net irrigation water of alfalfa increased by 36% in the HadGEM model under RCP8.5 and decreased by - 41% in the IPSL model under RCP8.5. Therefore, to improve alfalfa yield in Iran in the future, strategies compatible such as high temperature-tolerant cultivars may be the most reasonable approaches.

Keywords: Climate risks; Crop modeling; Potential production; Water management.

MeSH terms

  • Carbon Dioxide*
  • Climate Change
  • Iran
  • Medicago sativa*
  • Water

Substances

  • Water
  • Carbon Dioxide