Large-Scale, Automated Production of Adipose-Derived Stem Cell Spheroids for 3D Bioprinting

J Vis Exp. 2022 Mar 31:(181). doi: 10.3791/63430.

Abstract

Adipose-derived stromal/stem cells (ASCs) are a subpopulation of cells found in the stromal vascular fraction of human subcutaneous adipose tissue recognized as a classical source of mesenchymal stromal/stem cells. Many studies have been published with ASCs for scaffold-based tissue engineering approaches, which mainly explored the behavior of these cells after their seeding on bioactive scaffolds. However, scaffold-free approaches are emerging to engineer tissues in vitro and in vivo, mainly by using spheroids, to overcome the limitations of scaffold-based approaches. Spheroids are 3D microtissues formed by the self-assembly process. They can better mimic the architecture and microenvironment of native tissues, mainly due to the magnification of cell-to-cell and cell-to-extracellular matrix interactions. Recently, spheroids are mainly being explored as disease models, drug screening studies, and building blocks for 3D bioprinting. However, for 3D bioprinting approaches, numerous spheroids, homogeneous in size and shape, are necessary to biofabricate complex tissue and organ models. In addition, when spheroids are produced automatically, there is little chance for microbiological contamination, increasing the reproducibility of the method. The large-scale production of spheroids is considered the first mandatory step for developing a biofabrication line, which continues in the 3D bioprinting process and finishes in the full maturation of the tissue construct in bioreactors. However, the number of studies that explored the large-scale ASC spheroid production are still scarce, together with the number of studies that used ASC spheroids as building blocks for 3D bioprinting. Therefore, this article aims to show the large-scale production of ASC spheroids using a non-adhesive micromolded hydrogel technique spreading ASC spheroids as building blocks for 3D bioprinting approaches.

Publication types

  • Video-Audio Media
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipose Tissue / metabolism
  • Bioprinting* / methods
  • Humans
  • Reproducibility of Results
  • Spheroids, Cellular
  • Stem Cells
  • Tissue Engineering / methods