Control of ice crystal nucleation and growth during the food freezing process

Compr Rev Food Sci Food Saf. 2022 May;21(3):2433-2454. doi: 10.1111/1541-4337.12950. Epub 2022 Apr 16.

Abstract

Freezing can maintain a low-temperature environment inside food, reducing water activity and preventing microorganism growth. However, when ice crystals are large, present in high amounts, and/or irregularly distributed, irreversible damage to food can occur. Therefore, ice growth is a vital parameter that needs to be controlled during frozen food processing and storage. In this review, ice growth theory and control are described. Macroscopic heat and mass transfer processes, the relationship between the growth of ice crystals and macroscopic heat transfer factors, and nucleation theory are reviewed based on the reported theoretical and experimental approaches. The issues addressed include how heat transfer occurs inside samples, variations in thermal properties with temperature, boundary conditions, and the functional relationship between ice crystal growth and freezing parameters. Quick freezing (e.g., cryogenic freezing) and unavoidable temperature fluctuations (e.g., multiple freeze-thaw cycles) are both taken into consideration. The approaches for controlling ice crystal growth based on the ice morphology and content are discussed. The characteristics and initial mechanisms of ice growth inhibitors (e.g., antifreeze proteins (AFPs), polysaccharides, and phenols) and ice nucleation agents (INAs) are complex, especially when considering their molecular structures, the ice-binding interface, and the dose. Although the market share for nonthermal processing technology is low, there will be more work on freezing technologies and their theoretical basis. Superchilling technology (partial freezing) is also mentioned here.

Keywords: cryoprotectants; heat transfer; ice crystal growth; nonthermal processing technology; nucleation.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antifreeze Proteins* / chemistry
  • Antifreeze Proteins* / metabolism
  • Food Handling
  • Freezing
  • Ice*
  • Water / chemistry

Substances

  • Antifreeze Proteins
  • Ice
  • Water