Thermo-optical reshaping of second-harmonic emission from dimer all-dielectric nanoresonators

Opt Lett. 2022 Apr 15;47(8):1992-1995. doi: 10.1364/OL.444348.

Abstract

All-dielectric nanophotonics offers a wide range of possibilities for thermally induced light manipulation at the nanoscale. High quality resonances allow for efficient light-to-heat conversion supported by various temperature detection approaches based on thermally sensitive intrinsic optical responses. In this work, we study theoretically a phenomenon of the photothermal reshaping of the radiation pattern of second-harmonic generation (SHG) that occurs in resonant all-dielectric systems. In the suggested geometry, a near-IR pulsed laser is used for SHG while a continuous wave visible laser simultaneously heats the structure. The thermo-optical switching of the resonant optical states in the nanostructures governs the reconfiguration of the emission pattern, without significant loss in the magnitude of the SHG. We believe, that our findings will pave the way for subwavelength-size near-IR thermally switchable nonlinear optical devices.