Crack resistance of a noble green hydrophobic antimicrobial sealing coating film against environmental corrosion applied on the steel-cement interface for power insulators

RSC Adv. 2022 Mar 31;12(16):10126-10141. doi: 10.1039/d2ra00747a. eCollection 2022 Mar 25.

Abstract

Due to their great load-bearing capabilities, steel-cement interface structures are commonly employed in construction projects, and power utilities including electric insulators. The service life of the steel-cement interface is always decreasing owing to fracture propagation in the cement helped by steel corrosion. In this paper, a noble crack-resistant solution for steel-cement interfaces utilized in hostile outdoor environments is proposed. A Ce-rich, homogeneous, and thick hydrophobic sealing coating (HSC) is developed on the steel-cement interface after 60 minutes of immersion in a 60 000 ppm CeCl3·7H2O sealing coating solution. The specimens treated with optimized HSC film demonstrate fissure filling, lowest corrosion current (I corr) 2.3 × 10-7 A cm-2, maximum hardness (109 Hv), oxide-jacking resistance (40 years), hydrophobic characteristics, carbonation resistance, and bacterial corrosion resistance, resulting in a crack-free steel-cement interface. This work will pave the way for a new branch of environmentally acceptable coatings for the construction and power industries.