Nitrogen-phosphorus doped graphitic nano onion-like structures: experimental and theoretical studies

RSC Adv. 2021 Jan 13;11(5):2793-2803. doi: 10.1039/d0ra10019f. eCollection 2021 Jan 11.

Abstract

Onion-like graphitic structures are of great importance in different fields. Pentagons, heptagons, and octagons are essential features of onion-like graphitic structures that could generate important properties for diverse applications such as anodes in Li metal batteries or the oxygen reduction reaction. These carbon nanomaterials are fullerenes organized in a nested fashion. In this work, we produced graphitic nano onion-like structures containing phosphorus and nitrogen (NP-GNOs), using the aerosol assisted chemical vapor deposition method. The NP-GNOs were grown at high temperature (1020 °C) using ferrocene, trioctylphosphine oxide, benzylamine, and tetrahydrofuran precursors. The morphology, structure, composition, and surface chemistry of NP-GNOs were characterized using different techniques. The NP-GNOs showed diameters of 110-780 nm with Fe-based nanoparticles inside. Thermogravimetric analysis showed that NP-GNOs are thermally stable with an oxidation temperature of 724 °C. The surface chemistry analysis by FTIR and XPS revealed phosphorus-nitrogen codoping, and several functionalities containing C-H, N-H, P-H, P-O, P[double bond, length as m-dash]O, C[double bond, length as m-dash]O, and C-O bonds. We show density functional theory calculations of phosphorus-nitrogen doping and functionalized C240 fullerenes. We present the optimized structures, electronic density of states, HOMO, and LUMO wave functions for P-doped and OH-functionalized fullerenes. The P[double bond, length as m-dash]O and P-O bonds attributed to phosphates or hydroxyl groups attached to phosphorus atoms doping the NP-GNOs could be useful in improving supercapacitor function.