Micellization of a starch-poly(1,4-butylene succinate) nano-hybrid for enhanced energy storage

RSC Adv. 2021 Mar 22;11(19):11745-11759. doi: 10.1039/d1ra00635e. eCollection 2021 Mar 16.

Abstract

In this work, we report on a reverse micellization approach to prepare uncarbonized starch and poly(1,4-butylene succinate) hybrids with exceptional charge storage performance. Uncarbonized starch was activated through protonation, hybridized with poly (1,4-butylene succinate), configured into conductive reverse micelles, and incorporated with magnetite nanoparticles. Before magnetite incorporation, the maximum specific capacitance (C sp), energy density (E d), power density (P d) and retention capacity (%) of the reverse micelles were estimated to be 584 F g-1, 143 W h kg-1, 2356 W kg and 97.5%. After magnetite incorporation, we achieved a maximum supercapacitive performance of 631 F g-1, 204 W h kg-1, 4371 W kg-1 and 98%. We demonstrate that the use of magnetite incorporated St-PBS reverse micelles minimizes the contact resistance between the two supercapacitor electrodes, resulting in high charge storage capacity.