Development of a thermally stable Pt catalyst by redispersion between CeO2 and Al2O3

RSC Adv. 2021 Feb 10;11(12):7015-7024. doi: 10.1039/d1ra00059d. eCollection 2021 Feb 4.

Abstract

For catalytic systems consisting of Pt as the active component and CeO2-Al2O3 as the support material, the metal-support interaction between the Pt and CeO2 components is widely applied to inhibit aggregation of Pt species and thus enhance the thermal stability of the catalyst. In this work, a highly thermostable Pt catalyst was prepared by modifying the synthesis procedure for conventional Pt/CeO2/Al2O3 (Pt/Ce/Al) catalyst, that is, the CeO2 component was introduced after deposition of Pt on Al2O3. The obtained CeO2/Pt/Al2O3 (Ce/Pt/Al) catalyst exhibits significantly different aging behavior. During the hydrothermal aging process, redispersion of Pt species from the surface of Al2O3 to the surface of CeO2 occurs, resulting in a stronger metal-support interaction between Pt and CeO2. Thus, the formed Pt-O-Ce bond could act as an anchor to retard aggregation of Pt species and help Pt species stay at a more oxidative state. Consequently, excellent reduction capability and superior three-way catalytic performance are acquired by Ce/Pt/Al-a after hydrothermal aging treatment.