Catalytic pyrolysis (Ni/Al-MCM-41) of palm (Elaeis guineensis) oil to obtain renewable hydrocarbons

RSC Adv. 2020 Dec 24;11(1):555-564. doi: 10.1039/d0ra06122k. eCollection 2020 Dec 21.

Abstract

The present work aims to evaluate the potential of Al-MCM-41 and Ni/Al-MCM-41 catalysts for the production of renewable hydrocarbons through the fast pyrolysis of palm oil. Al-MCM-41 mesoporous material was synthesized by the hydrothermal route. The Ni/Al-MCM-41 catalyst was obtained by the wet impregnation method of the Al-MCM-41 material (support) previously synthesized with 2.3% metal in relation to the support mass. The thermal pyrolysis of palm oil yielded many oxygenated compounds with a very high molecular mass. The pyrolysis of the oil under the action of Al-MCM-41 presented greater selectivity when compared to thermal pyrolysis, obtaining 63% of hydrocarbons in the C11-C15 region. The catalytic pyrolysis of the oil with Ni/Al-MCM-41 showed a high deoxygenation rate, obtaining a hydrocarbon percentage equal to 78%, in addition to obtaining a percentage of hydrocarbons equal to 46% in the region of interest, viz., C11-C15, demonstrating the potential of the Ni/Al-MCM-41 catalyst for renewable hydrocarbons production (bio-jet fuel) from palm oil.