Negation of the Quantum Mass Function for Multisource Quantum Information Fusion With its Application to Pattern Classification

IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):2054-2070. doi: 10.1109/TPAMI.2022.3167045. Epub 2023 Jan 6.

Abstract

In artificial intelligence systems, a question on how to express the uncertainty in knowledge remains an open issue. The negation scheme provides a new perspective to solve this issue. In this paper, we study quantum decisions from the negation perspective. Specifically, complex evidence theory (CET) is considered to be effective to express and handle uncertain information in a complex plane. Therefore, we first express CET in the quantum framework of Hilbert space. On this basis, a generalized negation method is proposed for quantum basic belief assignment (QBBA), called QBBA negation. In addition, a QBBA entropy is revisited to study the QBBA negation process to reveal the variation tendency of negation iteration. Meanwhile, the properties of the QBBA negation function are analyzed and discussed along with special cases. Then, several multisource quantum information fusion (MSQIF) algorithms are designed to support decision making. Finally, these MSQIF algorithms are applied in pattern classification to demonstrate their effectiveness. This is the first work to design MSQIF algorithms to support quantum decision making from a new perspective of "negation", which provides promising solutions to knowledge representation, uncertainty measure, and fusion of quantum information.