A-DA'D-A Structured Organic Phototheranostics for NIR-II Fluorescence/Photoacoustic Imaging-Guided Photothermal and Photodynamic Synergistic Therapy

ACS Appl Mater Interfaces. 2022 Apr 27;14(16):18043-18052. doi: 10.1021/acsami.1c22444. Epub 2022 Apr 14.

Abstract

Multimodal imaging-guided combinational phototherapies triggered by a single near-infrared (NIR) laser are highly desirable. However, their development is still a big challenge. Herein, we have developed an "acceptor-donor-acceptor'-donor-acceptor" structured organic phototheranostics (Y16-Pr) with strong light-harvesting ability in the NIR region. After being modified with polyethylene glycol (PEG), the obtained biocompatible nanoparticles (Y16-Pr-PEG NPs) could conduct NIR-II fluorescence imaging (FLI) and photoacoustic imaging (PAI) and perform photothermal therapy (PTT) and photodynamic therapy (PDT) simultaneously. Notably, Y16-Pr-PEG NPs showed an impressive photothermal conversion efficiency (PCE) of 82.4% under 808 nm laser irradiation. The irradiated NPs could also produce hydroxyl radicals (•OH) and singlet oxygen (1O2) for type I and type II PDT, respectively. In vivo and in vitro experiments revealed that the Y16-Pr-PEG NPs significantly inhibit tumor cell growth without apparent toxic side effects under laser irradiation. Overall, the single-laser-triggered multifunctional phototheranostic Y16-Pr-PEG NPs can achieve NIR-II FLI/PAI-guided synergistic PTT/PDT against tumors.

Keywords: A-DA′D-A structured molecule; dual-mode imaging; photothermal therapy; type I/II photodynamic therapy.

MeSH terms

  • Cell Line, Tumor
  • Nanoparticles* / therapeutic use
  • Optical Imaging
  • Photoacoustic Techniques* / methods
  • Photochemotherapy* / methods
  • Phototherapy
  • Theranostic Nanomedicine / methods