Inherent single-cell bioelectrical parameters of thousands of neutrophils, eosinophils and basophils derived from impedance flow cytometry

Cytometry A. 2022 Aug;101(8):639-647. doi: 10.1002/cyto.a.24559. Epub 2022 Apr 21.

Abstract

Single-cell bioelectrical properties are commonly used for blood cell phenotyping in a label-free manner. However, previously reported inherent single-cell bioelectrical parameters (e.g., diameter Dc , specific membrane capacitance Csm and cytoplasmic conductivity σcy ) of neutrophils, eosinophils and basophils were obtained from only tens of individual cells with limited statistical significance. In this study, granulocytes were separated into neutrophils, eosinophils and basophils based on fluorescent flow cytometry, which were further aspirated through a constriction-microchannel impedance flow cytometry for electrical property characterization. Based on this microfluidic impedance flow cytometry, single-cell values of Dc , Csm and σcy were measured as 10.25 ± 0.66 μm, 2.17 ± 0.30 μF/cm2 , and 0.37 ± 0.05 S/m for neutrophils (ncell = 9442); 9.73 ± 0.51 μm, 2.07 ± 0.19 μF/cm2 , and 0.30 ± 0.04 S/m for eosinophils (ncell = 2982); 9.75 ± 0.49 μm, 2.06 ± 0.17 μF/cm2 , and 0.31 ± 0.04 S/m for basophils (ncell = 5377). Based on these inherent single-cell bioelectrical parameters, neural pattern recognition was conducted, producing classification rates of 80.8% (neutrophil vs. eosinophil), 77.7% (neutrophil vs. basophil) and 59.3% (neutrophil vs. basophil). These results indicate that as inherent single-cell bioelectrical parameters, Dc , Csm and σcy can be used to classify neutrophils from eosinophils or basophils to some extent while they cannot be used to effectively distinguish eosinophils from basophils.

Keywords: constriction microchannel; granulocyte phenotyping; impedance flow cytometry; inherent bioelectrical parameter; single-cell analysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Basophils*
  • Electric Impedance
  • Eosinophils*
  • Flow Cytometry / methods
  • Neutrophils