The potential impacts of invasions on native symbionts

Ecology. 2022 Aug;103(8):e3726. doi: 10.1002/ecy.3726. Epub 2022 Jun 1.

Abstract

Symbionts, including parasites, pathogens, and mutualists, can play important roles in determining whether or not invasions by host species will be successful. Loss of enemies from the native habitat, such as parasites and pathogens, can allow for higher invader fitness in the invaded habitat. The presence of mutualists (e.g., pollinators, seed dispersers, mycorrhizae, and rhizobial bacteria) in the invaded habitat can facilitate invasion success. Although there has been a great deal of research focusing on how invading hosts may benefit from enemy losses or mutualist gains, far less attention has focused on how native symbiont populations and communities respond to invasion by non-indigenous hosts and symbionts. In this paper, we present a conceptual framework examining how symbionts such as parasites, pathogens, commensals, and mutualists can influence invader success and whether these native symbionts will benefit or decline during invasion. The first major factor in this framework is the competence of the invading host relative to the native hosts. Low- or non-competent hosts that support few if any native symbionts could cause declines in native symbiont taxa. Competent invading hosts could potentially support native parasites, pathogens, commensals, and mutualists, especially if there is a closely related or similar host in the invaded range. These symbionts could inhibit or facilitate invasion or have no discernible effect on the invading host. An understanding of how native symbionts interact with competent versus non-competent invading hosts as well as various invading symbionts is critical to our understanding of invasion success, its consequences for invaded communities and how native symbionts in these communities will fare in the face of invasion.

Keywords: commensalism; dilution effect; host competence; mutualism; parasitism; symbiont acquisition.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bacteria
  • Ecosystem
  • Parasites*
  • Symbiosis*