Structural Characterization and In Vitro Antioxidant Activity of Metallothionein from Oratosquilla oratoria

Molecules. 2022 Apr 3;27(7):2320. doi: 10.3390/molecules27072320.

Abstract

We report here the purification of a novel metal-binding protein from Oratosquilla oratoria (O. oratoria MT-1) by gel and ion-exchange chromatography. SDS-PAGE and MALDI-TOF analyses demonstrated that isolated O. oratoria MT-1 was of high purity with a molecular weight of 12.4 kDa. The fluorescence response to SBD-F derivatives revealed that O. oratoria MT-1 contained a large number of sulfhydryl groups, which is a general property of metallothioneins. Zn and Cu metal stoichiometries for O. oratoria MT-1 were 3.97:1 and 0.55:1, respectively. The proportion of cysteine (Cys) residues in the amino acid composition was 32.69%, and aromatic amino acids were absent. The peptide sequence coverage with Macrobrachium rosenbergii calmodulin (accession AOA3S8FSK5) was 60%. Infrared spectroscopy of O. oratoria MT-1 revealed two obvious peaks at absorption frequencies for the amide I band and the amide II band. CD spectra revealed that the secondary structure was mainly composed of random coil (57.6%) and β-sheet (39.9%). An evaluation of in vitro antioxidant activity revealed that isolated O. oratoria MT-1 has strong reducing activities, exhibiting scavenging rates for DPPH and OH of 77.8% and 75.8%, respectively (IC50 values 0.57 mg/mL and 1.1 mg/mL). O. oratoria MT-1 may be used as a functional additive in cosmetics, health foods, and medical products, as well as a reference material for quantitative analysis of metallothionein in such products.

Keywords: Oratosquilla oratoria; antioxidant activity; extraction; metallothionein; purification.

MeSH terms

  • Amides
  • Animals
  • Antioxidants* / pharmacology
  • Crustacea
  • Metallothionein*
  • Protein Structure, Secondary

Substances

  • Amides
  • Antioxidants
  • Metallothionein