Revisiting the Effect of Pyrolysis Temperature and Type of Activation on the Performance of Carbon Electrodes in an Electrochemical Capacitor

Materials (Basel). 2022 Mar 25;15(7):2431. doi: 10.3390/ma15072431.

Abstract

Hierarchical porous carbons are known to enhance the electrochemical features of electrodes in electrochemical capacitors. However, the contribution of surface oxygen and the resulting functionalities and wettability, along with the role of electrical conductivity and degree of amorphous or crystalline nature in the micro-mesoporous carbons, are not yet clear. This article considers the effect of carbonisation temperature (500-900 °C) and the type of activation (CO2, KOH) on the properties mentioned above in case of carbon xerogels (CXs) to understand the resulting electrochemical performances. Depending on the carbonisation temperature, CX materials differ in micropore surface area (722-1078 m2 g-1) while retaining a mesopore surface area ~300 m2 g-1, oxygen content (3-15%, surface oxygen 0-7%), surface functionalities, electrical conductivity (7 × 10-6-8 S m-1), and degree of amorphous or crystalline nature. Based on the results, electrochemical performances depend primarily on electrical conductivity, followed by surface oxygen content and meso-micropore connectivity. The way of activation using a varied extent of CO2 exposure and KOH concentrations played differently in CX in terms of pore connectivity from meso- to micropores and their contributions and degree of oxidation, and resulted in different electrochemical behaviours. Such performances of activated CXs depend solely on micro-mesopore features.

Keywords: activation; carbon xerogel; carbonisation; electrical conductivity; electrochemical performance; meso-micropore connectivity; supercapacitor; surface oxygen functionality.