Metabolomics Analysis for Nitrite Degradation by the Metabolites of Limosilactobacillus fermentum RC4

Foods. 2022 Mar 30;11(7):1009. doi: 10.3390/foods11071009.

Abstract

Nitrite (NIT), a commonly used food additive, especially in pickled and cured vegetables and meat products, might cause acute and chronic diseases. Fermentation with lactic acid bacteria (LAB) is an effective method for degrading NIT and improving the flavor of pickled and cured foods. In this study, Limosilactobacillus fermentum (L. fermentum) RC4 with a high NIT degradation ability was found to degrade NIT in a new manner when compared with reported enzymatic and acid degradation, namely, metabolite degradation during fermentation in MRS broth, which shows a synergistic effect with acid to increase NIT degradation. Liquid chromatography-mass spectrometry analysis identified 134 significantly different metabolites, of which 11 metabolites of L. fermentum RC4, namely, γ-aminobutyric acid (GABA), isocitric acid, D-glucose, 3-methylthiopropionic acid (MTP), N-formyl-L-methionine, dimethyl sulfone (MSM), D-ribose, mesaconate, trans-aconitic acid, L-lysine, and carnosine, showed significant NIT degradation effects compared with the control group (MRS broth). Verification experiments showed that adding the above 11 metabolites to 100 mg/L NIT and incubating for 24 h resulted in NIT degradation rates of 5.07%, 4.41%, 6.08%, 16.93%, 5.28%, 2.41%, 0.93%, 18.93%, 12.25%, 6.42%, and 3.21%, respectively. Among these, three metabolites, namely, mesaconate, MTP, and trans-aconitic acid, showed efficient NIT degradation abilities that might be related to the degradation mechanism involving decarboxylation reactions. This is the first systematic study of NIT degradation by LAB, resulting in the identification of a new metabolite degradation pathway and three efficient NIT degradation metabolites.

Keywords: LCMS; lactic acid bacteria; metabolites; nitrite degradation.