Physicochemical Properties and Mouthfeel in Commercial Plant-Based Yogurts

Foods. 2022 Mar 24;11(7):941. doi: 10.3390/foods11070941.

Abstract

There is a growing need for plant-based yogurts that meet consumer demands in terms of texture. However, more research is required to understand the relationship between physicochemical and mouthfeel properties in plant-based yogurts. The purpose of this study was to determine the physicochemical properties of five commercial plant-based yogurt alternatives with different chemical compositions, making comparisons to dairy yogurts and thick, creamy, thin, and watery mouthfeel sensations. The physicochemical parameters studied included large and small deformation rheology, particle size, soluble solids, acidity, and chemical composition. Significant differences in flow behavior and small deformation rheology were found between dairy- and plant-based yogurts. Among plant-based yogurts thick, creamy, thin, and watery mouthfeel sensations were strongly associated with steady shear rates and apparent viscosity. The results highlight the importance of large deformation rheology to advance the use of plant-based ingredients in the development of yogurt alternatives. Furthermore, this study demonstrates that dairy- and plant-based yogurts with a similar mouthfeel profiles may have different viscoelastic properties, which indicates that instrumental and sensory methods should not be considered substitutive but complementary methods when developing plant-based yogurts in a cost-effective and timely manner.

Keywords: dynamic mouthfeel perception; oat; physicochemical properties; plant-based yogurt alternative; rheology; sensory evaluation.