Nitrogen-Salt Interaction Adjusts Root Development and Ion Accumulation of the Halophyte Suaeda salsa

Plants (Basel). 2022 Mar 31;11(7):955. doi: 10.3390/plants11070955.

Abstract

Nitrogen (N) application might exert a great impact on root (biomass, length) distribution, which possibly contributes to ion and nutrient uptakes. Here, we address the effects of N application on these characteristics to detect how N improves its salt tolerance. Suaeda salsa was subjected to four salt levels (0.5, 1.0, 1.5, and 2.0%) and three N treatments (NO3--N: 0, 0.25, and 0.50 g·kg-1) in soil column experiments. The N applications performed a "dose effect" that significantly enhanced the growth of Suaeda at low salt levels, while negative effects were displayed at high salt levels. Moderate N markedly benefited from Na+ and Cl- uptake, which was approximately 111 mg and 146 mg per plant at a salt level of 1.0%. Exposure to a certain N application significantly enhanced topsoil root length at salt levels of 0.5% and 1.0%, and it was higher by 0.766 m and 1.256 m under N50 treatment than that under N0 treatment, whereas the higher salt levels accelerate subsoil root growth regardless of N treatment. Therefore, its interactive effects on root development and ion uptake were present, which would provide further theoretical basis for improving saline soil amelioration by N application. Regression analysis always showed that topsoil root length generated more positive and significant influences on ion uptake and vegetative growth than total root length. The results suggested that N application is beneficial to salt tolerance by altering root allocation so as to raise its elongation and gather more ions for halophyte in the topsoil.

Keywords: Suaeda salsa; interaction; nitrogen; root distribution; salinity.