Mechanical Properties and Water Absorption Capacity of Hybrid GFRP Composites

Polymers (Basel). 2022 Mar 29;14(7):1394. doi: 10.3390/polym14071394.

Abstract

Hybrid glass fibre reinforced polymer (GFRP) composites have been used for decades in various engineering applications. However, it has a drawback with its application in marine/flood environments due to a lack of water resistance and frail mechanical stability. Floods have been considered one of the most periodic hazards that could hit urban areas, due to climate change. The present paper aims to address this gap and to investigate the mechanical properties (tensile, compressive, and flexural strength) and water absorption capacity of hybrid GFRP composite comprising woven E-glass fabric and epoxy resin, various reinforcing materials (kenaf and coconut fibres), and various filler materials (fly ash, nano-silica, and calcium carbonate (CaCO3). The composites with 30 wt.% GFRP, 50 wt.% resin, 15 wt.% fly ash, 5 wt.% CaCO3, 10 wt.% GFRP, 60 wt.% resin, and 30 wt.% fly ash showed the lowest water absorption property of 0.45%. The results revealed that the GFRP composite reinforced kenaf fibres with nano-silica, fly ash, and CaCO3 improved the water absorption resistance. At the same time, GFRP reinforced the coconut fibres with fly ash, and kenaf fibres with CaCO3 showed no favourable impact on water absorption. The identification of a hybrid GFRP composite with various reinforcing materials and fillers would assist future developments with a more compatible, enhanced, and reliable water-resistant composite, specifically for structural applications in flood-prone areas.

Keywords: calcium carbonate; coconut fibre; fly ash; hybrid GFRP composites; kenaf fibre; mechanical properties; nano-silica; water absorption capacity.