Effectiveness and Efficiency of Externally Bonded CFRP Sheets for Shear Strengthening of RC Beam-Column Joints

Polymers (Basel). 2022 Mar 26;14(7):1347. doi: 10.3390/polym14071347.

Abstract

To develop feasible carbon fiber reinforced polymer (CFRP) retrofit schemes for the shear strengthening of real three-dimensional reinforced concrete (RC) beam-column joints, a series of parameters in relation to the contributions of the CFRP sheets externally bonded to joint panels was numerically investigated in this study. The parameters include CFRP reinforcement ratio, CFRP layout, transverse beam-to-joint panel width ratio, transverse beam-to-joint panel height ratio, location of transverse beam, and number of transverse beams. Strengthening efficiency, a new dimensionless index, was introduced to evaluate the residual effect of a CFRP-strengthening system weakened by the presence of transverse beams in comparison with the increase in joint shear capacity in relation to the one-way counterpart. The results obtained from 44 nonlinear finite element models, which were calibrated against experimental observations, confirmed the effectiveness of the CFRP strengthening technique with regard to the relatively wide ranges of the parameters. The significant differences among the roles of the parameters were revealed, and the reasons behind the differences were analyzed. Furthermore, the shear mechanism of the CFRP-retrofitted joint panels was discussed with the proposed strut-and-tie model.

Keywords: carbon fiber-reinforced polymer; nonlinear finite element analysis; reinforced concrete beam-column joint; shear strengthening; transverse beam.