Explaining the Efficiency of Photosynthesis: Quantum Uncertainty or Classical Vibrations?

J Phys Chem Lett. 2022 Apr 21;13(15):3392-3399. doi: 10.1021/acs.jpclett.2c00538. Epub 2022 Apr 11.

Abstract

Photosynthetic organisms are known to use a mechanism of vibrationally assisted exciton energy transfer to efficiently harvest energy from light. The importance of quantum effects in this mechanism is a long-standing topic of debate, which has traditionally focused on the role of excitonic coherences. Here, we address another recent claim: that the efficient energy transfer in the Fenna-Matthews-Olson complex relies on nuclear quantum uncertainty and would not function if the vibrations were classical. We present a counter-example to this claim, showing by trajectory-based simulations that a description in terms of quantum electrons and classical nuclei is indeed sufficient to describe the funneling of energy to the reaction center. We analyze and compare these findings to previous classical-nuclear approximations that predicted the absence of an energy funnel and conclude that the key difference and the reason for the discrepancy is the ability of the trajectories to properly account for Newton's third law.

MeSH terms

  • Bacterial Proteins / metabolism
  • Light-Harvesting Protein Complexes* / metabolism
  • Photosynthesis
  • Quantum Theory
  • Uncertainty
  • Vibration*

Substances

  • Bacterial Proteins
  • Light-Harvesting Protein Complexes