Solar-Driven Producing of Value-Added Chemicals with Organic Semiconductor-Bacteria Biohybrid System

Research (Wash D C). 2022 Mar 23:2022:9834093. doi: 10.34133/2022/9834093. eCollection 2022.

Abstract

Photosynthetic biohybrid systems exhibit promising performance in biosynthesis; however, these systems can only produce a single metabolite and cannot further transform carbon sources into highly valuable chemical production. Herein, a photosynthetic biohybrid system integrating biological and chemical cascade synthesis was developed for solar-driven conversion of glucose to value-added chemicals. A new ternary cooperative biohybrid system, namely bacterial factory, was constructed by self-assembling of enzyme-modified light-harvesting donor-acceptor conjugated polymer nanoparticles (D-A CPNs) and genetically engineered Escherichia coli (E. coli). The D-A CPNs coating on E. coli could effectively generate electrons under light irradiation, which were transferred into E. coli to promote the 37% increment of threonine production by increasing the ratio of nicotinamide adenine dinucleotide phosphate (NADPH). Subsequently, the metabolized threonine was catalyzed by threonine deaminase covalently linking with D-A CPNs to obtain 2-oxobutyrate, which is an important precursor of drugs and chemicals. The 2-oxobutyrate yield under light irradiation is increased by 58% in comparison to that in dark. This work provides a new organic semiconductor-microorganism photosynthetic biohybrid system for biological and chemical cascade synthesis of highly valuable chemicals by taking advantage of renewable carbon sources and solar energy.