Correlations between oligosaccharides in breast milk and the composition of the gut microbiome in breastfed infants

J Dairy Sci. 2022 Jun;105(6):4818-4828. doi: 10.3168/jds.2021-20928. Epub 2022 Apr 7.

Abstract

The composition of the microbiome in the early stages of life can directly affect the health of developing infants, and prior evidence suggests that human milk oligosaccharides (HMO) are critical regulators in the maintenance of a healthy gut microbiota in infants. Herein, we conducted an analysis of the gut microbiota of 1-mo-old breastfed infants from Jining and Harbin, China, and a corresponding analysis of the HMO profiles in samples of maternal breast milk. Quantification of HMO was conducted via liquid chromatography-mass spectrometry, and bacterial DNA sequencing was employed for characterization of the fecal microbiota. The abundances of total neutral oligosaccharides, lactodifucotetraose, lacto-N-fucopentaose I, and disialyl-lacto-N-tetraose were significantly increased in samples from the Jining group relative to the Harbin group. Bifidobacterium were the predominant microbial species in infants from both Harbin and Jining, with these levels being significantly higher in the former set. Correlation analyses evaluating microbes and 19 different HMO indicated that HMO were beneficial to the development of the gut microbiota in young infants. The predominance of Bifidobacterium in these microbial communities suggests that their ability to efficiently utilize HMO can contribute to the homeostasis of the gut microflora, with breast milk-derived HMO being critical to the shaping of the gut microbiota in breastfed infants.

Keywords: Bifidobacterium; HMO; correlation; gut microbiota; infants.

MeSH terms

  • Animals
  • Bifidobacterium
  • Breast Feeding
  • Female
  • Gastrointestinal Microbiome* / genetics
  • Humans
  • Milk, Human* / chemistry
  • Oligosaccharides / analysis

Substances

  • Oligosaccharides