Chemical Targeting of Rhodol Voltage-Sensitive Dyes to Dopaminergic Neurons

ACS Chem Neurosci. 2022 Apr 20;13(8):1251-1262. doi: 10.1021/acschemneuro.1c00862. Epub 2022 Apr 10.

Abstract

Optical imaging of changes in the membrane potential of living cells can be achieved by means of fluorescent voltage-sensitive dyes (VSDs). A particularly challenging task is to efficiently deliver these highly lipophilic probes to specific neuronal subpopulations in brain tissue. We have tackled this task by designing a solubilizing, hydrophilic polymer platform that carries a high-affinity ligand for a membrane protein marker of interest and a fluorescent VSD. Here, we disclose an improved design of polymer-supported probes for chemical, nongenetic targeting of voltage sensors to axons natively expressing the dopamine transporter in ex vivo mouse brain tissue. We first show that for negatively charged rhodol VSDs functioning on the photoinduced electron transfer principle, poly(ethylene glycol) as a carrier enables targeting with higher selectivity than the polysaccharide dextran in HEK cell culture. In the same experimental setting, we also demonstrate that incorporation of an azetidine ring into the rhodol chromophore substantially increases the brightness and voltage sensitivity of the respective VSD. We show that the superior properties of the optimized sensor are transferable to recording of electrically evoked activity from dopaminergic axons in mouse striatal slices after averaging of multiple trials. Finally, we suggest the next milestones for the field to achieve single-scan recordings with nongenetically targeted VSDs in native brain tissue.

Keywords: cell type-specific imaging; chemical targeting; molecular imaging probes; voltage-sensitive dyes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dopaminergic Neurons*
  • Fluorescent Dyes* / chemistry
  • Membrane Potentials / physiology
  • Mice
  • Polymers
  • Xanthones

Substances

  • Fluorescent Dyes
  • Polymers
  • Xanthones
  • rhodol