Thermodiffusion of ions in nanoconfined aqueous electrolytes

J Colloid Interface Sci. 2022 Aug:619:331-338. doi: 10.1016/j.jcis.2022.03.077. Epub 2022 Mar 21.

Abstract

Understanding of thermal effects on ion transport in porous media is very important for environmental applications. The movement of ions along a temperature gradient is named thermophoresis or thermodiffusion. In nanoporous media, where the interaction of ions with solid-liquid interfaces has a significant influence on their migration, the theoretical understanding of thermodiffusion is still incomplete. Herein, we present experimental results for the thermodiffusion of cations in saturated nanoporous silica by the through-diffusion method. Both the experimental data and theoretical analysis indicate that the temperature-induced polarization of surface charges strongly influences ionic transport. Stated simply, the electric field in a liquid electrolyte confined in nanopores changes when the applied temperature gradients are altered, thereby affecting the motion of the nanoconfined ionic species. By applying an external temperature field, the gradient of the surface charge density leads to the charged aqueous species exhibiting strong temperature gradient-dependent electrophoretic mobility. When the thickness of the electrical double layer is comparable to the size of the nanopores, the theory used herein indicates that this kind of nonisothermal ionic mobility is up to one order of magnitude larger than classical thermophoretic mobility. This study improves the understanding of the underlying mechanisms that govern the transport of ions in nanoporous media, which could set the stage for diffusional metamaterials induced by specific thermal fields.

Keywords: Electrical double layer; Electrophoretic; Nanoporous media; Thermodiffusion.