Probabilistic risk assessment of heavy metals in urban farmland soils of a typical oasis city in northwest China

Sci Total Environ. 2022 Aug 10:833:155096. doi: 10.1016/j.scitotenv.2022.155096. Epub 2022 Apr 6.

Abstract

Previous studies lacked quantitative evaluation studies of the probability of ecology and human health risks from soil heavy metals. This study assessed heavy metal risk level by collecting topsoil samples from a typical oasis city (Wuwei) in northwest China and then quantitatively evaluating the ecological risk from heavy metals by incorporating the uncertainty of health risk model parameters into the risk assessment. This study found that anthropogenic activities have influenced the accumulation of heavy metals in the study area and that the risk of contamination of soil heavy metals was characterized as light to moderate contamination and low ecological risk. On this basis, the species sensitivity distribution curves of heavy metals were constructed using species acute toxicity data, the predicted no effect concentrations of heavy metals were derived, and a probabilistic ecological risk evaluation was conducted. The results show that the current soil environmental quality standards in China are not effective in protecting species diversity. In addition, the probability of ecological risk for Cr, Ni and As in the study area was 63.3%, 23.8% and 7.1%, however, traditional pollution assessment methods underestimate the hazard of Cr. Monte Carlo simulations have shown that the probability of the carcinogenic risk of Cr (adults: 79.4%; children: 94.5%) and As (adults: 78.9%; children: 94.0%) is high, the probability of the total carcinogenic risk exceeding 1E-06 is 99.0%, the probability of the non-carcinogenic risk is low, and the slope factor and reference dose can significantly affect the evaluation of human health risks.

Keywords: Agricultural soils; Heavy metals; Probabilistic ecological risk; Probabilistic health risk; Wuwei Oasis.

MeSH terms

  • Adult
  • Child
  • China
  • Environmental Monitoring
  • Farms
  • Humans
  • Metals, Heavy* / analysis
  • Risk Assessment
  • Soil
  • Soil Pollutants* / analysis

Substances

  • Metals, Heavy
  • Soil
  • Soil Pollutants