Accelerating prototyping experiments for traveling wave structures for lossless ion manipulations

Talanta. 2022 Jul 1:244:123446. doi: 10.1016/j.talanta.2022.123446. Epub 2022 Apr 4.

Abstract

Traveling wave structures for lossless ion manipulation (TW-SLIM) has proven a valuable tool for the separation and study of gas-phase ions. Unfortunately, many of the traditional components of TW-SLIM experiments manifest practical and financial barriers to the technique's broad implementation. To this end, a series of technological innovations and methodologies are presented which enable for simplified SLIM experimentation and more rapid TW-SLIM prototyping. In addition to the use of multiple independent board sets that comprise the present SLIM system, we introduce a low-cost, multifunctional traveling wave generator to produce TW within the TW-SLIM. This square-wave producing unit proved effective in realizing TW-SLIM separations compared to traditional approaches. Maintaining a focus on lowering barriers to implementation, the present set of experiments explores the use of on-board injection (OBI) methods, which offer potential alternatives to ion funnel traps. These OBI techniques proved feasible and the ability of this simplified TW-SLIM platform to enhance ion accumulation was established. Further experimentation regarding ion accumulation revealed a complexity to ion accumulation within TW-SLIM that has yet to be expounded upon. Lastly, the ability of the presented TW-SLIM platform to store ions for extended periods (1 s) without significant loss (<10%) was demonstrated. The aforementioned experiments clearly establish the efficacy of a simplified TW-SLIM platform which promises to expand adoption and experimentation of the technique.

Keywords: Ion injection; Ion mobility; Ion trapping; SLIM; Traveling wave.

MeSH terms

  • Electrodes
  • Ions* / chemistry

Substances

  • Ions