Individual variability in the nonlinear development of the corpus callosum during infancy and toddlerhood: a longitudinal MRI analysis

Brain Struct Funct. 2022 Jul;227(6):1995-2013. doi: 10.1007/s00429-022-02485-y. Epub 2022 Apr 9.

Abstract

The human brain spends several years bootstrapping itself through intrinsic and extrinsic modulation, thus gradually developing both spatial organization and functions. Based on previous studies on developmental patterns and inter-individual variability of the corpus callosum (CC), we hypothesized that inherent variations of CC shape among infants emerge, depending on the position within the CC, along the developmental timeline. Here we used longitudinal magnetic resonance imaging data from infancy to toddlerhood and investigated the area, thickness, and shape of the midsagittal plane of the CC by applying multilevel modeling. The shape characteristics were extracted using the Procrustes method. We found nonlinearity, region-dependency, and inter-individual variability, as well as intra-individual consistencies, in CC development. Overall, the growth rate is faster in the first year than in the second year, and the trajectory differs between infants; the direction of CC formation in individual infants was determined within six months and maintained to two years. The anterior and posterior subregions increase in area and thickness faster than other subregions. Moreover, we clarified that the growth rate of the middle part of the CC is faster in the second year than in the first year in some individuals. Since the division of regions exhibiting different tendencies coincides with previously reported divisions based on the diameter of axons that make up the region, our results suggest that subregion-dependent individual variability occurs due to the increase in the diameter of the axon caliber, myelination partly due to experience and axon elimination during the early developmental period.

Keywords: Corpus callosum; Infant; Longitudinal study; Multilevel modeling; Principal component analysis; Procrustes analysis.

MeSH terms

  • Axons
  • Brain / pathology
  • Corpus Callosum*
  • Humans
  • Infant
  • Magnetic Resonance Imaging* / methods