Controlling the volume fraction of glass-forming colloidal suspensions using thermosensitive host "mesogels"

J Chem Phys. 2022 Apr 7;156(13):134901. doi: 10.1063/5.0086822.

Abstract

The key parameter controlling the glass transition of colloidal suspensions is φ, the fraction of the sample volume occupied by the particles. Unfortunately, changing φ by varying an external parameter, e.g., temperature T as in molecular glass formers, is not possible, unless one uses thermosensitive colloidal particles, such as the popular poly(N-isopropylacrylamide) (PNiPAM) microgels. These, however, have several drawbacks, including high deformability, osmotic deswelling, and interpenetration, which complicate their use as a model system to study the colloidal glass transition. Here, we propose a new system consisting of a colloidal suspension of non-deformable spherical silica nanoparticles, in which PNiPAM hydrogel spheres of ∼100-200μm size are suspended. These non-colloidal "mesogels" allow for controlling the sample volume effectively available to the silica nanoparticles and hence their φ, thanks to the T-induced change in mesogels' volume. Using optical microscopy, we first show that the mesogels retain their ability to change size with T when suspended in Ludox suspensions, similarly as in water. We then show that their size is independent of the sample thermal history such that a well-defined, reversible relationship between T and φ may be established. Finally, we use space-resolved dynamic light scattering to demonstrate that, upon varying T, our system exhibits a broad range of dynamical behaviors across the glass transition and beyond, comparable with those exhibited by a series of distinct silica nanoparticle suspensions of various φ.