Improved HUMARA for the Detection of X-Linked Agammaglobulinemia Carriers

Genet Test Mol Biomarkers. 2022 Apr;26(4):220-227. doi: 10.1089/gtmb.2021.0139. Epub 2022 Apr 8.

Abstract

Background: Fragment analysis of exon 1 of the human androgen receptor, known as HUMARA, is a polymerase chain reaction (PCR)-based method for detecting X-linked agammaglobulinemia (XLA) carriers. This method takes advantage of X-chromosome inactivation (XCI) in female cells. XLA is caused by mutations in the Bruton tyrosine kinase (BTK) gene, located in Xq22.1. In this study, XCI is nonrandom or skewed in B-cells. B-cells with an active X-chromosome carrying a BTK mutation do not mature. Peripheral B-cells in XLA carriers inactivate the mutated X-chromosome. Methods: HUMARA was performed using DNA from purified B-cells and total leukocytes. DNA was digested using methylation-sensitive HhaI. The PCR of the HUMARA polymorphic marker was performed with the HhaI digested samples. The lengths of the PCR products were determined. If a suspected carrier showed skewed XCI in their B-cells, the marker length that corresponded with the length determined in the index patient indicated their carrier status. Results: HUMARA was conducted on purified B-cells; this allowed easier identification of the mutated or inactive allele, as the active allele was enzymatically digested. Analysis of 30 possible carriers using modified HUMARA corroborated that the carrier status in all samples that were heterozygous for the marker using XCI calculation for leukocytes showed a Gaussian distribution, while the carrier B-cell DNA showed a skewed XCI. Conclusion: Carrier status was successfully determined for most of the analyzed samples. B-cell enrichment resulted in precise carrier determination data, reduced the sample size, and facilitated inactive and active allele identification.

Keywords: HUMARA; X-chromosome inactivation; XLA; carriers.

MeSH terms

  • Agammaglobulinemia* / diagnosis
  • Agammaglobulinemia* / genetics
  • Female
  • Genetic Diseases, X-Linked* / diagnosis
  • Genetic Diseases, X-Linked* / genetics
  • Heterozygote
  • Humans
  • X Chromosome Inactivation / genetics

Supplementary concepts

  • Bruton type agammaglobulinemia