Simultaneous Measurement of IgM and IgG Antibodies to SARS-CoV-2 Spike, RBD, and Nucleocapsid Multiplexed in a Single Assay on the xMAP INTELLIFLEX DR-SE Flow Analyzer

Microbiol Spectr. 2022 Apr 27;10(2):e0250721. doi: 10.1128/spectrum.02507-21. Epub 2022 Apr 7.

Abstract

The multiplex capabilities of the new xMAP INTELLIFLEX DR-SE flow analyzer were explored by modifying a serological assay previously used to characterize the IgG antibody to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The goal was to examine the instrument's performance and to simultaneously measure IgM and IgG antibody responses against multiple SARS-CoV-2 antigens in a single assay. Specific antibodies against the SARS-CoV-2 spike (S), receptor binding domain (RBD), and nucleocapsid (N) proteins were investigated in 310 symptomatic case patients using a fluorescent microsphere immunoassay and simultaneous detection of IgM and IgG. Neutralization potential was studied using the addition of soluble angiotensin-converting enzyme 2 (ACE2) to block antibody binding. A profile extending to 180 days from symptom onset (DFSO) was described for antibodies specific to each viral antigen. Generally, IgM levels peaked and declined rapidly ∼3-4 weeks following infection, whereas S- and RBD-specific IgG plateaued at 80 DFSO. ACE2 more effectively prevented IgM and IgG binding in convalescent cases > 30 DFSO, suggesting those antibodies had greater neutralization potential. This work highlighted the multiplex and multi-analyte potential of the xMAP INTELLIFLEX DR-SE, and provided further evidence for antigen-specific IgM and IgG trajectories in acute and convalescent cases. IMPORTANCE The xMAP INTELLIFLEX DR-SE enabled simultaneous and semi-quantitative detection of both IgM and IgG to three different SARS-CoV-2 antigens in a single assay. The assay format is advantageous for rapid and medium-throughput profiling using a small volume of specimen. The xMAP INTELLIFLEX DR-SE technology demonstrated the potential to include numerous SARS-CoV-2 antigens; future work could incorporate multiple spike protein variants in a single assay. This could be an important feature for assessing the serological response to emerging variants of SARS-CoV-2.

Keywords: ACE2; COVID-19; FMIA; SARS-CoV-2; antibody; fluorescent microsphere immunoassay; microsphere; nucleocapsid; serology; spike glycoprotein.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin-Converting Enzyme 2
  • Antibodies, Neutralizing
  • Antibodies, Viral
  • COVID-19* / diagnosis
  • Humans
  • Immunoglobulin G
  • Immunoglobulin M
  • Nucleocapsid
  • SARS-CoV-2*
  • Spike Glycoprotein, Coronavirus

Substances

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • Immunoglobulin G
  • Immunoglobulin M
  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2
  • Angiotensin-Converting Enzyme 2