Tunable photoluminescence and energy transfer of Eu3+,Ho3+-doped Ca0.05Y1.93-xO2 nanophosphors for warm white LEDs applications

Sci Rep. 2022 Apr 6;12(1):5824. doi: 10.1038/s41598-022-09630-x.

Abstract

A series of Eu3+ ions doped Ca0.05Y1.93-xO3:0.02Ho3+ (CYO:Ho3+,xEu3+) nanophosphors having multicolour tuneability have been synthesised by following a simplistic solution combustion approach. The synthesised samples have been characterised by employing X-ray diffraction (XRD), Transmission electron microscope (TEM), and Fourier transforms infrared spectroscopy (FTIR). The optical properties have been engrossed by UV-visible and photoluminescent excitation and emission spectra, and decay lifetimes measurements. The characteristic emission, which occurs due to the f-f transition of Ho3+ and Eu3+ has been observed in emission spectra with excitation of 448 nm. By adjusting the doping ratio of Ho3+/Eu3+, the as-synthesized nanophosphor accomplishes multicolour tunability from green-yellow to red. Emission spectra and decay lifetime curve recommend dipole-dipole interaction causes energy transfer from Ho3+ → Eu3+. The energy transfer process from Ho3+ to Eu3+ has been confirmed through electric dipole-dipole interaction with critical distance 15.146 Å. Moreover, temperature dependent emission spectra show the high thermal stability with an activation energy ⁓ 0.21 eV, with the quantum efficiency of 83.6%. CIE coordinate illustrates that the singly doped Ho3+ and Eu3+ lie in the green and red region, respectively, while the as-synthesized CYO:Ho3+,xEu3+shows tunability from green to red with low CCT and high colour purity values. Hence, the CYO:Ho3+,xEu3+nanophosphor may be a near-UV excited multicolour colour-tunable pertinent candidate with potential prospects for multicolour- display and near-ultraviolet lighting applications.