Comparison of device-based therapy options for heart failure with preserved ejection fraction: a simulation study

Sci Rep. 2022 Apr 6;12(1):5761. doi: 10.1038/s41598-022-09637-4.

Abstract

Successful therapy of heart failure with preserved ejection fraction (HFpEF) remains a major unmet clinical need. Device-based treatment approaches include the interatrial shunt device (IASD), conventional assist devices pumping blood from the left ventricle (LV-VAD) or the left atrium (LA-VAD) towards the aorta, and a valveless pulsatile assist device with a single cannula operating in co-pulsation with the native heart (CoPulse). Hemodynamics of two HFpEF subgroups during rest and exercise condition were translated into a lumped parameter model of the cardiovascular system. The numerical model was applied to assess the hemodynamic effect of each of the four device-based therapies. All four therapy options show a reduction in left atrial pressure during rest and exercise and in both subgroups (> 20%). IASDs concomitantly reduce cardiac output (CO) and shift the hemodynamic overload towards the pulmonary circulation. All three mechanical assist devices increase CO while reducing sympathetic activity. LV-VADs reduce end-systolic volume, indicating a high risk for suction events. The heterogeneity of the HFpEF population requires an individualized therapy approach based on the underlying hemodynamics. Whereas phenotypes with preserved CO may benefit most from an IASD device, HFpEF patients with reduced CO may be candidates for mechanical assist devices.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Atrial Pressure
  • Heart Atria
  • Heart Failure* / therapy
  • Hemodynamics
  • Humans
  • Stroke Volume
  • Ventricular Function, Left