High-resolution compressed sensing time-of-flight MR angiography outperforms CT angiography for evaluating patients with Moyamoya disease after surgical revascularization

BMC Med Imaging. 2022 Apr 7;22(1):64. doi: 10.1186/s12880-022-00790-w.

Abstract

Background: To evaluate the utility of high-resolution compressed sensing time-of-fight MR angiography (CS TOF-MRA) for assessing patients with moyamoya disease (MMD) after surgical revascularization, by comparison with computer tomography angiography (CTA).

Methods: Twenty patients with MMD after surgical revascularizations who underwent CS TOF-MRA and CTA were collected. The scan time of CS TOF-MRA was 5 min and 4 s, with a reconstructed resolution of 0.4 × 0.4 × 0.4 mm3. Visualization of superficial temporal artery and middle cerebral artery (STA-MCA) bypass, neovascularization into the brain pial surface and Moyamoya vessels (MMVs) were independently ranked by two neuroradiologists on CS TOF-MRA and CTA, respectively. The patency of anastomosis was assessed as patent or occluded, using digital subtraction angiography and expert's consensus as ground truth. Interobserver agreement was calculated using the weighted kappa statistic. Wilcoxon signed-rank or Chi-square test was performed to investigate diagnostic difference between CS TOF-MRA and CTA.

Results: Twenty-two hemispheres from 20 patients were analyzed. The inter-reader agreement for evaluating STA-MCA bypass, neovascularization and anastomosis patency was good to excellent (κCS TOF-MRA, 0.738-1.000; κCTA, 0.743-0.909). The STA-MCA bypass and MMVs were better visualized on CS TOF-MRA than CTA (both P < 0.05). CS TOF-MRA had a higher sensitivity than CTA (94.7% vs. 73.7%) for visualizing anastomoses. Neovascularization was better observed in 13 (59.1%) sides on CS TOF-MRA, in comparison to 7 (31.8%) sides on CTA images (P = 0.005).

Conclusion: High-resolution CS TOF-MRA outperforms CTA for visualization of STA-MCA bypass, neovascularization and MMVs within a clinically reasonable time in MMD patients after revascularization.

Keywords: Cerebral revascularization; Compressed sensing; Magnetic resonance angiography; Moyamoya disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiography, Digital Subtraction / methods
  • Computed Tomography Angiography
  • Humans
  • Magnetic Resonance Angiography / methods
  • Moyamoya Disease* / diagnostic imaging
  • Moyamoya Disease* / surgery

Supplementary concepts

  • Moyamoya disease 1