Focal osteoporosis defect is associated with vertebral compression fracture prevalence in a bone mineral density-independent manner

JOR Spine. 2022 Feb 26;5(1):e1195. doi: 10.1002/jsp2.1195. eCollection 2022 Mar.

Abstract

Introduction: Focal osteoporosis defect has shown a high association with the bone fragility and osteoporotic fracture prevalence. However, no routine computed tomography (CT)-based vertebral focal osteoporosis defect measurement and its association with vertebral compression fracture (VCF) were discussed yet. This study aimed to develop a routine CT-based measurement method for focal osteoporosis defect quantification, and to assess its association with the VCF prevalence.

Materials and methods: A total of 205 cases who underwent routine CT scanning, were retrospectively reviewed and enrolled into either the VCF or the control group. The focal bone mineral content loss (focal BMC loss), measured as the cumulated demineralization within bone void space, was proposed for focal osteoporosis defect quantification. Its scan-rescan reproducibility and its correlation with trabecular bone mineral density (BMD) and apparent microarchitecture parameters were evaluated. The association between focal BMC loss and the prevalence of VCF was studied by logistic regression.

Results: The measurement of focal BMC loss showed high reproducibility (RMSSD = 0.011 mm, LSC = 0.030 mm, ICC = 0.97), and good correlation with focal bone volume fraction (r = 0.79, P < 0.001), trabecular bone separation (r = 0.76, P < 0.001), but poor correlation with trabecular BMD (r = 0.37, P < 0.001). The focal BMC loss was significantly higher in the fracture group than the control (1.03 ± 0.13 vs. 0.93 ± 0.11 mm; P < 0.001), and was associated with prevalent VCF (1.87, 95% CI = 1.31-2.65, P < 0.001) independent of trabecular BMD level.

Discussion: As a surrogate measure of focal osteoporosis defect, focal BMC Loss independently associated with the VCF prevalence. It suggests that focal osteoporosis defect is a common manifestation that positively contributed to compression fracture risk and can be quantified with routine CT using focal BMC Loss.

Keywords: deformity; degeneration; imaging; structure function relationships.