Robust Self-Assembled Molecular Passivation for High-Performance Perovskite Solar Cells

Angew Chem Int Ed Engl. 2022 Jun 20;61(25):e202204148. doi: 10.1002/anie.202204148. Epub 2022 Apr 21.

Abstract

Defect passivation via post-treatment of perovskite films is an effective method to fabricate high-performance perovskite solar cells (PSCs). However, the passivation durability is still an issue due to the weak and vulnerable bonding between passivating functional groups and perovskite defect sites. Here we propose a cholesterol derivative self-assembly strategy to construct crosslinked and compact membranes throughout perovskite films. These supramolecular membranes act as a robust protection layer against harsh operational conditions while providing effective passivation of defects from surface toward inner grain boundaries. The resultant PSCs exhibit a power conversion efficiency of 23.34 % with an impressive open-circuit voltage of 1.164 eV. The unencapsulated devices retain 92 % of their initial efficiencies after 1600 h of storage under ambient conditions, and remain almost unchanged after heating at 85 °C for 500 h in a nitrogen atmosphere, showing significantly improved stability.

Keywords: Durable Passivation; Intermolecular Interaction; Membrane; Perovskite Solar Cells; Self-Assembly.