Graphitic-N-doped graphene quantum dots for photothermal eradication of multidrug-resistant bacteria in the second near-infrared window

J Mater Chem B. 2022 May 4;10(17):3357-3365. doi: 10.1039/d2tb00192f.

Abstract

Developing efficient therapeutic strategies for combating bacterial infection remains a challenge owing to the indiscriminate utilization of antibiotics and the prevalence of multidrug-resistant (MDR) bacteria. Herein, highly graphitic-N-doped graphene quantum dots (N-GQDs) with efficient NIR-II photothermal conversion properties were synthesized for the first time for photothermal antibacterial therapy. The obtained N-GQDs exhibited strong NIR absorption ranging from 700 to 1200 nm, achieving high photothermal conversion efficiency of 77.8% and 50.4% at 808 and 1064 nm, respectively. Outstanding antibacterial and antibiofilm activities against MDR bacteria (methicillin-resistant Staphylococcus aureus, MRSA) were achieved by the N-GQDs in the presence of an 808 or 1064 nm laser. In vivo investigations verified that the generation of hyperthermia by N-GQDs plus a NIR-II laser can combat MDR bacterial infections and thus significantly accelerate wound healing. Our work provides a novel carbon-based nanomaterial as a photothermal antibacterial agent for efficiently avoiding bacterial resistance and fighting MDR bacterial infections.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use
  • Drug Resistance, Multiple, Bacterial
  • Graphite* / pharmacology
  • Methicillin-Resistant Staphylococcus aureus*
  • Quantum Dots*

Substances

  • Anti-Bacterial Agents
  • Graphite