Deposition, microstructure and nanoindentation of multilayer Zr nitride and carbonitride nanostructured coatings

Sci Rep. 2022 Apr 4;12(1):5591. doi: 10.1038/s41598-022-09449-6.

Abstract

Nitrides, carbides, and carbonitrides of transition metal elements like Zr, W, Ti, etc. are generally employed to produce hard coatings. Zirconium-based hard coatings have shown useful applications in the areas of tribology, biomedicine and electrical due to their high thermal stability, hardness, biocompatibility, good erosion, wear, and corrosion resistance. In this study, we created homogeneous and tenacious nanostructured hard coatings based on Zr with good mechanical properties. The magnetron sputter deposition technique was utilized to coat stainless steel 316L substrates with multilayers of Zr/ZrN and ZrN/ZrCN with individual layer thicknesses of 250 and 500 nm for each coating composition. The deposition conditions were adjusted to create two different coating thicknesses of 2 and 3 µm. The thickness of the coating was confirmed using Calotest and the coatings' morphology and elemental composition were determined utilizing the atomic force microscope and scanning electron microscope equipped with energy dispersive x-ray spectrometer. Coating thickness and adhesion were measured using cross-sectional samples and XRD was utilized to analyze the coatings structure. Nanoindenter was employed to determine the instrumental nanoindentation hardness and elastic modulus. The influence of coating thickness on tribological behavior was further investigated using the ratio of nanohardness-to-elastic modulus (H/E). No evidence of decohesion was observed at the substrate/coatings interface, and the grains of all the coatings were observed to show columnar growth which were homogeneous, compact and dense. The grains of the ZrN/ZrCN coatings were observed to be denser, finer and more compact compared to those of the Zr/ZrN coatings. Correspondingly, higher hardness, modulus and H/E values were exhibited by ZrN/ZrCN than Zr/ZrN coatings. This suggests that the ZrN/ZrCN coatings are capable of exhibiting better wear resistance and fracture toughness. The coatings developed in this investigation are anticipated to be suitable for applications in tribology due to their excellent hardness and H/E properties.