Programmable photonic neural networks combining WDM with coherent linear optics

Sci Rep. 2022 Apr 4;12(1):5605. doi: 10.1038/s41598-022-09370-y.

Abstract

Neuromorphic photonics has relied so far either solely on coherent or Wavelength-Division-Multiplexing (WDM) designs for enabling dot-product or vector-by-matrix multiplication, which has led to an impressive variety of architectures. Here, we go a step further and employ WDM for enriching the layout with parallelization capabilities across fan-in and/or weighting stages instead of serving the computational purpose and present, for the first time, a neuron architecture that combines coherent optics with WDM towards a multifunctional programmable neural network platform. Our reconfigurable platform accommodates four different operational modes over the same photonic hardware, supporting multi-layer, convolutional, fully-connected and power-saving layers. We validate mathematically the successful performance along all four operational modes, taking into account crosstalk, channel spacing and spectral dependence of the critical optical elements, concluding to a reliable operation with MAC relative error [Formula: see text].