Hybrid Cu-Containing Compounds Based on Lacunary Strandberg Anions: Synthesis under Mild Conditions, Crystal Structure, and Magnetic Properties

Inorg Chem. 2022 Apr 18;61(15):5701-5714. doi: 10.1021/acs.inorgchem.1c02993. Epub 2022 Apr 4.

Abstract

A one-pot reaction of a copper source (metallic powder Cu0 or Cu2+ salts) and bpy (bpy = 2,2'-bipyridine) in the presence of (NH4)2HPO4 and (NH4)6Mo7O24·4H2O yields heterometallic hybrid compounds of the general type {[Cu(bpy)n(H2O)m]p[P2MoxOy]}. The structures exhibit a number of phosphomolybdate POMs including not only a common Strandberg anion [P2Mo5O23]6- but also its unprecedented bi- and trilacunary derivatives [P2Mo3O18]8- and [P2Mo2O15]8-. The structural determinants including the metal source (copper powder vs copper salts), counterion of the salts, and stoichiometry of the reagents were examined. An ex situ EPR study revealed the formation of different CuII complexes in the reaction mixture depending on the copper precursor. The obtained compounds have been found to possess selectivity toward the sorption of methylene blue in a mixture of organic dyes. DC magnetic measurements of 1-3 indicate rather strong antiferromagnetic metal-metal exchange interactions. Compound 1 exhibits field-induced slow magnetic relaxation in AC magnetic measurements, which is a rarely observed phenomenon among Cu(II) complexes.