Altered Brain Structural Reorganization and Hierarchical Integrated Processing in Obesity

Front Neurosci. 2022 Mar 18:16:796792. doi: 10.3389/fnins.2022.796792. eCollection 2022.

Abstract

The brain receives sensory information about food, evaluates its desirability and value, and responds with approach or withdrawal. The evaluation process of food in the brain with obesity may involve a variety of neurocircuit abnormalities in the integration of internal and external information processing. There is a lack of consistency of the results extant reported for aberrant changes in the brain with obesity that prohibits key brain alterations to be identified. Moreover, most studies focus on the observation of neural plasticity of function or structure, and the evidence for functional and structural correlations in the neuronal plasticity process of obesity is still insufficient. The aims of this article are to explore the key neural structural regions and the hierarchical activity pattern of key structural nodes and evaluate the correlation between changes in functional modulation and eating behavior. Forty-two participants with obesity and 33 normal-weight volunteers were recruited. Gray matter volume (GMV) and Granger causality analysis (GCA) were performed using the DPARSF, CAT12, and DynamicBC toolbox. Compared with the normal weight group, the obesity group exhibited significantly increased GMV in the left parahippocampal gyrus (PG). The obesity group showed decreased causal inflow to the left PG from the left orbitofrontal cortex (OFC), right calcarine, and bilateral supplementary motor area (SMA). Decreased causal outflow to the left OFC, right precuneus, and right SMA from the left PG, as well as increased causal outflow to the left middle occipital gyrus (MOG) were observed in the obesity group. Negative correlations were found between DEBQ-External scores and causal outflow from the left PG to the left OFC, and DEBQ-Restraint scores and causal inflow from the left OFC to the left PG in the obesity group. Positive correlation was found between DEBQ-External scores and causal outflow from the left PG to the left MOG. These results show that the increased GMV in the PG may play an important role in obesity, which may be related to devalued reward system, altered behavioral inhibition, and the disengagement of attentional and visual function for external signals. These findings have important implications for understanding neural mechanisms in obesity and developing individual-tailored strategies for obesity prevention.

Keywords: eating behaviors; imaging; magnetic resonance; neuroscience; obesity.