Oncolytic peptide nanomachine circumvents chemo resistance of renal cell carcinoma

Biomaterials. 2022 May:284:121488. doi: 10.1016/j.biomaterials.2022.121488. Epub 2022 Mar 29.

Abstract

Due to intrinsic and acquired chemo/radiotherapy-resistance, renal cell carcinoma shows limited therapeutic response to clinically utilized targeting drugs. Here a tumor-activated oncolytic peptide nanomachine is devised to selectively lysing tumor cell membrane without causing drug resistance. Specifically, in the acidic tumor microenvironment, the oncolytic peptide nanomachine automatically activated through morphologically transformation from nanoparticles to nanofibrils with restoring α-helical conformation, which physically bind to tumor cell membrane with multiple (spatially correlated and time-resolved) interactions and subsequently lyse local cell membrane. The IC50 of the oncolytic peptide nanomachine is as low as 2.44 μM and it inhibit up to 90% of tumor cells within 2 h with unique bystander killing effect. In vivo, the tumor inhibition rate of the oncolytic peptide nanomachine is 71% without off-target activity and hemolytic activity. These results support that tumor-selective oncolytic peptide nanomachine represent a promising alternative approach for multidrug-resistant tumor treatments by inducing cell membrane lysis.

Keywords: Cancer therapy; Morphology transformation; Nanomaterials; Peptides; Self-assembly.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Renal Cell* / therapy
  • Cell Line, Tumor
  • Female
  • Humans
  • Kidney Neoplasms* / therapy
  • Male
  • Oncolytic Virotherapy* / methods
  • Oncolytic Viruses* / physiology
  • Peptides / chemistry
  • Tumor Microenvironment

Substances

  • Peptides